Python Arrays Tutorial
An array is a collection of elements stored in a single variable. In Python, arrays can be implemented using the array
module or lists.
1. Difference Between Lists and Arrays in Python
✅ For simple cases, Python lists work as dynamic arrays.
✅ For numerical operations, use array
or NumPy
for efficiency.
2. Creating an Array in Python
To use an array, import the array
module.
import array
# Creating an integer array
arr = array.array('i', [1, 2, 3, 4, 5])
print(arr) # Output: array('i', [1, 2, 3, 4, 5])
✅ 'i'
represents an integer array (other types: 'f'
for float, 'd'
for double, etc.).
3. Accessing Array Elements
print(arr[0]) # Output: 1
print(arr[2]) # Output: 3
✅ Array indexing starts from 0
(like lists).
4. Adding and Removing Elements
Append (Add at the end)
arr.append(6)
print(arr) # Output: array('i', [1, 2, 3, 4, 5, 6])
Insert (Add at a specific index)
arr.insert(2, 10) # Insert 10 at index 2
print(arr) # Output: array('i', [1, 2, 10, 3, 4, 5, 6])
Remove an element
arr.remove(3) # Removes first occurrence of 3
print(arr) # Output: array('i', [1, 2, 10, 4, 5, 6])
Pop (Remove by index)
arr.pop(1) # Removes element at index 1
print(arr) # Output: array('i', [1, 10, 4, 5, 6])
5. Looping Through an Array
Using a for
loop
for num in arr:
print(num, end=" ") # Output: 1 10 4 5 6
Using a while
loop
i = 0
while i < len(arr):
print(arr[i], end=" ")
i += 1
# Output: 1 10 4 5 6
6. Finding the Length of an Array
print(len(arr)) # Output: 5
✅ len()
returns the number of elements in the array.
7. Slicing an Array
print(arr[1:4]) # Output: array('i', [10, 4, 5])
print(arr[:3]) # Output: array('i', [1, 10, 4])
print(arr[2:]) # Output: array('i', [4, 5, 6])
✅ Slicing works just like lists.
8. Searching for an Element
print(arr.index(10)) # Output: 1 (Index of element 10)
✅ Returns the first index where the element is found.
9. Sorting an Array
arr = array.array('i', [5, 2, 8, 1, 3])
arr = array.array('i', sorted(arr))
print(arr) # Output: array('i', [1, 2, 3, 5, 8])
✅ The sorted()
function returns a sorted array.
10. Using NumPy for Advanced Arrays
Python’s built-in array
module is limited. For more functionality, use NumPy.
Installing NumPy
pip install numpy
Creating a NumPy Array
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
print(arr) # Output: [1 2 3 4 5]
✅ NumPy is optimized for numerical operations and large datasets.
Conclusion
- Use
array
for memory-efficient storage of same-type elements. - Use lists for flexibility (mixing different types).
- Use NumPy for powerful numerical operations.
🚀 Let me know if you need more details on a specific part!
0 comments:
Post a Comment